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Abstract.
Using the electron beam ion trap facility at Livermore we have performed controlled laboratory measurements to search for

dielectronic satellite transitions associated with the three strong 3s→ 2p transitions in the Fe XVII spectrum. These transitions
fall into the 16.5 - 17.1 Å wavelength range. Surprisingly, we find that even the two strong, electric dipole allowed 3s→ 2p
transitions are not associated with any substantial amount of dielectronic satellite lines. Dielectronic satellite lines are only
associated with the two strongest 3d→ 2p transitions located near 15 Å.
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1. INTRODUCTION

Dielectronic satellite emission has been shown to contribute to the L-shell x-ray spectra of highly charged iron. For
example, essentially all n = 3→ n = 2 transitions of carbonlike, boronlike, berylliumlike, and lithiumlike iron situated
in the 10.5 to 15.5 Å region blend with unresolved dielectronic satellite lines that involve a so-called spectator electron
with a high principal quantum number n≥ 4 [1]. L-shell dielectronic satellite lines also have been shown to play a role
in the L-shell x-ray emission of Fe XVIII [2], where they have a potential use as temperature diagnostics.

Dielectronic satellite lines are produced by resonant electron capture and subsequent radiative decay [3]. For
dielectronic satellite lines associated with the 3`′ → 2p L-shell lines of Fe XVII these processes can be described
as:

1s22s22p6 + e−→ 1s22s22p5n`n′`′→ 1s22s22p6n′`′+hν (1)

The strongest such satellite lines hν are those with n = n′ = 3. However, even these lines are not easily detected
in typical astrophysical or laboratory plasmas. Moreover, the upper levels produced by dielectronic recombination
can also be produced by collisional excitation so that it is challenging to tease apart the line formation mechanisms.
As a result, the n = 3→ n = 2 Fe XVI x-ray lines detected so far in low-density coronal plasmas are lines that are
excited mostly by electron impact excitation [4, 5, 6, 7, 8]. The only lines of Fe XVI produced purely by dielectronic
recombination identified to date are those lines with an n′ = 4 spectator electron. These were found in the spectrum
of the corona of the star Capella observed with the Chandra X-ray Observatory [9]. However, the feature produced by
these lines is very weak.

Using the Livermore electron beam ion trap facility we can select the line formation process and, thus, record lines
that are specifically produced by dielectronic recombination. In fact, we have recently used this facility to identify
the dielectronic satellite lines associated with one of the electric-dipole allowed 3d→ 2p transition in Fe XVII [10],
which is labeled 3C in standard notation [11, 12].

We have now extended our laboratory measurements to search for dielectronic satellite transitions associated with
the three 3s→ 2p transitions labeled 3F , 3G, and 3H, which are among the strongest lines in the Fe XVII spectrum.
Surprisingly, we find that even the two strong electric dipole allowed 3s→ 2p transitions are not associated with any
substantial amount of dielectronic satellite lines.

2. EXPERIMENTAL SETUP

The present measurements were carried out on the Livermore electron beam ion trap facility [13]. It uses a mono-
energetic electron beam to produce, excite, and trap ions of the desired charge state. In order to measure the emission



from Fe XVII and its satellite lines, we employed a crystal spectrometer [14] that covered the iron L-shell emission
between about 15.0 and 17.5 Å. The spectrometer was equipped with a thin-window proportional counter [15] that
detected individual x rays diffracted by the crystals.

A window-less, cryogenically cooled Si(Li) solid-state detector was used to monitor the overall x-ray emission from
the ion trap. The Si(Li) detector has a relatively poor energy resolution of about 150 eV, which is much worse than that
of the EBIT x-ray calorimeter (ECS) we also use to monitor the machine’s x-ray emission [16, 17]. However, it has a
two order of magnitude higher count rate than the ECS so that we can monitor the trap’s performance in real time.

Dielectronic recombination is a resonant process, i.e. the energy of the free electron e− must be such that upon
capture into a level n′`′ it gives off the correct energy to promote a bound electron from an n = 2 level to a level n`.
Emission from dielectronic satellites is, therefore, produced when we set the beam energy to the resonance energy.
Sitting on a given resonance, however, also depletes the available number of Fe16+ ions. As a result, we measure
dielectronic resonance features by sweeping over the resonances in a sufficiently quick manner to avoid substantial
depletion, as described in earlier experiments [18, 19, 20, 21].

In the present experiment we swept the electron beam energy from well below the resonance energy to excite the
1s22s22p53`3`′ resonances, which are located at about 400 eV, to well above the threshold energy for exciting the Fe
XVII lines. In fact, we have chosen the upper energy to be just below the ionization potential of Fe16+. This choice
maximizes the abundance of Fe16+ ions in the trap. The energy needed to excite the 3s→ 2p transition wtih the longest
wavelength is about 700 eV. It is larger for the more energetic lines of Fe XVII; e.g., the threshold energy of line 3C is
about 830 eV.

Data from the crystal spectrometer and the Si(Li) detector were acquired using an event-mode data acquistion
system [22]. Each x-ray event is tagged with the energy of the electron beam as well as the time within the sweep
cycle.

3. RESULTS AND DISCUSSION

The x-ray emission recorded with the Si(Li) detector as a function of beam energy is shown in Fig. 1. As Fig. 1 shows,
our measurements resolve the resonances with spectator electrons n′ = 3 and 4. The resonances with n′ ≥ 5 are closely
spaced in energy and in part overlap with each other. Moreover, the electron beam energy has an energy spread of
about 30 to 50 eV [23, 24], which makes it impossible to resolve resonances that are spaced closer than this spread.
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FIGURE 1. L-shell x-ray emission from iron ions recorded with a Si(Li) detector as a function of electron beam energy. The
location of the resonances with spectator electrons n′ = 3 and 4 and those with n′ ≥ 5 are marked.

The resolution of our crystal spectrometer (about 1.5 eV) greatly exceeds that of the Si(Li) detector. As a result,
measurements with the crystal spectrometer clearly resolve individual x-ray lines. The x-ray emission observed with



our crystal spectrometer as a function of beam energy is shown in Fig. 2. The spectrometer covers the range of
the (1s22s22p5

3/23s1/2)J=1,2→ 1s22s22p6
J=0 lines labeled 3G and M2, the (1s22s22p5

1/23s1/2)J=1→ 1s22s22p6
J=0 line

labeled 3F and the (1s22s22p5
1/2,3/23d3/2,5/2)J=1→ 1s22s22p6

J=0 lines labeled 3E, 3D, and 3C. Here we use standard
notation introduced by Parkinson and others [11, 12, 25, 26]. All of these lines are electric dipole transitions, except
line M2, which is a magnetic quadrupole transition.
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FIGURE 2. Crystal spectrometer measurement of the Fe XVII x-ray emission as a function of electron beam energy. The bright
emission labeled 3C, 3D, 3F 3G, and M2 are Fe XVII transitions. The (blue) dashed line delineates the threshold for electron
impact-excitation. X rays emitted at electron beam energies below this line are from dielectronic recombination.

As we have already mentioned in connection with Fig. 1, x-ray emission produced at beam energies below the
threshold energy for exciting a given line is the result of dielectronic recombination. As seen from Fig. 2, only lines
3C and 3D are associated with x-ray emission excited at beam energies below their threshold energies. We detect no
such below-threshold emission associated with lines 3F , 3G, and M2. Our measurement, thus, demonstrates that the
3s→ 2p transitions are not associated with dielectronic satellite lines. This is surprising, given that two of the three
3s→ 2p transitions are electric dipole allowed transitions with a large radiative decay rate that should favor radiative
stabilization of doubly excited states produced by dielectronic capture.

An analysis of the dielectronic satellite features associated with the two strongest 3d→ 2p transitions is in progress.
The n′ = 3 features have a lot of spectral structure. In addition, both 3d→ 2p lines are associated with a continuous
set of high-n dielectronic satellites. The intensity of these satellites smoothly maps onto the intensity of the 3d→ 2p
lines as the electron energy crosses the excitation threshold. A similar behavior of the x-ray excitation function has
been observed for the K-shell x-ray lines of heliumlike ions [27, 28, 29].
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